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LETTER TO THE EDITOR 

On the integrable equations and degenerate dispersion laws 
in multidimensional spaces 

B G Konopelchenko 
Institute of Nuclear Physics, 630090, Novosibirsk 90, USSR 

Received 29 March 1983 

Abstract. The general reason for the restricted applicability of the inverse scattering 
transform method in multidimensional spaces is discussed. 

The inverse scattering transform (IST) method is a powerful tool for the investigation 
of nonlinear evolution equations (see e.g. Zakharov et ul 1980, Bullough and Caudrey 
1980, Ablowitz and Segur 1981, Calogero and Degasperis 1982). The IST method 
has been applied to numerous nonlinear equations in 1 + 1 and 1 + 2 dimensions (one 
time and one and two spatial dimensions). However, the applicability of the IST 
method to the equations in more than two spatial dimensions is much more restricted 
(Zakharov et a1 1980). Fo; example, only linear differential equations can be represen- 
ted in the Lax form a L / a t  = [L ,  A ]  if L is the multidimensional Schrodinger operator 
L = - A +  U ( x l ,  . . . , X N )  (Perelomov 1976). 

In the present paper the general reason which leads to the strong restriction on 
the applicability of the standard version of the IST method in multidimensional spaces 
is pointed out. The structure of the degenerate dispersion laws in the case of more 
that two spatial dimensions is also considered. 

In the standard version of the IST method the nonlinear equations are equivalent 
to the commutativity condition [T1, T2] = 0 of the two operators T1 and T2.  Here we 
will consider for definiteness the non-stationary Schrodinger operator 

(1) T~ = a / a x N  + a 2 / a x :  + a  . . + a 2 / a ~ ; - 1  + u ( x l , .  . . , x N ,  t )  

T,  = a / a t  + 9 ( U ( x 1 , .  . . , x N ,  t ) ,  8 1 8 x 1 , .  . . , a / a x N ) .  

as the operator T1. Let the operator T2 be of the form 

(2) 
The dimension N of the operator T1 is an arbitrary one. For N = 2 the operator (1) 
has been used for the integration of the Kadomtsev-Petviashvili equation (see Zak- 
harov et a1 1980). The direct and inverse scattering problems for the operator (1) at 
N = 2 were considered by Zakharov and Manakov (1979) and Manakov (1981). 

Let us introduce analogously to the case N = 2 the solutions F t  (x, xN,  t )  of the 
scattering problem 

(3) T i F ( x ,  x N ,  t )  = 0 

F ;  (x, x N ,  t )  

given by their asymptotic behaviour 

exp(ikx + k 2 x N )  
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where x = (xl, . . . , XN-I) ,  k = ( k l ,  . . . , kN- l )  and --OO < ki  < CO. The scattering matrix 
S ( k ’ ,  k ,  t )  is defined as follows: 

Ff  (x ,  XN, t )  = dk’ F;,(x,  XN, t ) S ( k ’ ,  k ,  t ) .  J 
For small (in a suitable sense) potentials one has in linear (Born 
well known expression 

S ( k ’ ,  k, t )  = S(k’ - k )  + 13(kf - k,  & I Z  - k 2 ,  t )  

(4) 

approximation the 

where C(q, qN, t )  is a Fourier transform of the potential U(%, x N ,  1. 

i t  is of the form 
The evolution of the scattering matrix in time t is defined by the operator Tz and 

(6) 

where A(&)  = 9 ( 0 ,  ikl, . . . , ikN-l, ik’). The evolution law (6) is valid, of course, in 
the Born approximation too. Substituting ( 5 )  into (6) ,  one gets 

dS(k’, k, t)/dt = (A(&’)-A(k))S(k’, k,  t )  

af i (q ,  q ~ ,  $ ) / a t  =(A(k’) -A(k) )o(q ,  q ~ ,  t )  (7) 

where q l = k ; - k l ,  . . . , q  ~ - 1 = k j v - 1  - k N - l ,  q N = k f 2 - - k 2 .  For self-consistency of 
equation (7) it is necessary that A(&‘)-A(&) be also a function only of the variables 
41, . . . , qN-lr q N ,  i.e. 

(8) A (k’) -A ( k  ) = W ( k  ’ - k,  k ” - k ‘) 

where W(q,  q N )  is a certain function. 
So the fulfilment of (8) is the necessary condition for the self-consistency of the 

evolution law (6) of the scattering matrix. In other words, all admissible functions 
A(&)  and therefore all admissible operators T2 should satisfy the condition (8). 

The condition (8) is a functional equation for A(&).  We consider subsequently 
the cases N = 2 and N 3 3. 

It is easy to see that in the two-dimensional case N = 2 the condition (8) is always 
satisfied. Indeed, from the definitions q1 = k ;  - k l ,  q 2  = ki2 - k: one has k ;  = 
( q 2 + d ) / 2 q l 7  k l  = ( q 2 - q ? ) / 2 q 1 .  The quantity 

A ( k  1 -A(ki)  = A  ((qz + 4 : ) / 2 q i )  -A((qz -4: ) / 2 q i )  

is a function of only q1 and q2 for any function A ( k l ) .  
For multidimensional spaces ( N  3 3) the situation is quite different. 

Theorem 1. For N 3 3 the condition 

A(k’ ) -A(&)= W ( k ’ - k , f ( k ‘ ) - f ( k ) )  (9) 

where f ( k )  is an arbitrary entire function is satisfied only for linear functions A(&)  = 
N-1 aiki within the class of entire functions. 

To prove this theorem let us consider firstly the case N = 3 and f ( k l ,  k z )  = k: + k;. 
Let us introduce the variable G1 = k’l + k l  in addition to the variables q1 = k ;  -kl, 
q 2  = k’z -k2, q 3  = k? +kb2 - k:  - k ; .  Expressing 41, 42, q3,  g1 through 41, q2 ,  q3, gl 
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one has 
k -1- 1 1-Zq1-541, k t - 1 -  1 

1 - 241 + 5419 
(10) 

The sets of variables k ; ,  k ; ,  k l ,  k2  and q l ,  42, q3 ,  41 are connected by a nondegenerate 
transformation and give different parametrisations of the same four-dimensional space. 

(11) 

on the variable ( i l .  For a linear function A = a l k l + a ~ k ~  the quantity (11) is (~141+  

( ~ 2 4 2 ,  i.e. it does not depend on q l ,  For a quadratic function A = a k :  + p k l k Z + y k :  
the quantity (11) contains the following dependence on 41: 

(12) 

The quantity (12) should be equal to zero for any 41, 42. Therefore, a = p = y = 0. 
For any polynomial function A the situation is similar. Indeed, let A ( k )  be a 

polynomial of order n.  Let us introduce the variable (il = k ;  + k l  in addition to the 
variables 41, 4 2 ,  q3 .  The condition of the independence of the quantity (11) of 41 is 
equivalent to the equations 

k i  = (4z+4: - ( i i 4 i ) /2qz9  k2 = (43 -4: -(i iq1)/2q2. 

The condition (9) is now the condition of independence of the quantity 
A(L* + L  241 241, ( 4 3 f 4 :  - 4 1 4 1 ) / 2 q Z ) - A ( ~ 4 l - f q l ,  (43 -4 :  -(i l41)/242) 

aql(i1 +%p - Y)qZ(il  -b (s:/sZ)s'l. 

( f " G ' ) ( A ( k  k i )  - A ( k i ,  k2))Ii1=0 = 0 (13) 

where k ; ,  k;, k l ,  kZ are given by (10). The left-hand side of (13) is of the form 
I;ml+m2+m3=m Cmlm2m3q?'4~'4Y3. Since all powers of 41,42 ,43  are independent, (13) 
for given m is in fact a system of f (m + l ) (m +2)  equations. SO for n > 1 a number 
of the equations for the coefficients of the polynomial A ( k l ,  k 2 )  is more than the 
number (n  + 1) of these coefficients. Therefore (13) has only trivial (linear) solutions 
for n > 1. 

The proof of the theorem for N > 3 and arbitrary function f(k) is quite similar. 
We introduce the new variables 41 = k i  + k l ,  . . . , ( i N - 2  = kk-2  + kN-2 in addition to 
the variables 4 1 , .  . . , ~ N - I ,  4 N .  The sets of the variables k ; ,  . . . , k L - l ,  k l ,  . . . , k N - ,  
and 41, . . . , 4 N ,  i l ,  . . . , ( i N - 2  are connected by a non-degenerate transformation and 
give different parametrisations of the same (2N - 2)-dimensional space. The condition 
(9) is the condition of the independence of A(k') - A ( k )  (where k' and k are expressed 
through 4 1 , .  . . , q N ,  41,. . . , ( i ~ - 2 )  of the variables 4 1 , .  . . , ( ~ N - z ,  that is equivalent to 
the equations 

(am/a$" ) ( A  (k ') - A  (k ))I i1 =o = 0, 1 = 1 , .  . . , N - 2 .  (14) 

It is not difficult to show that for polynomial A ( k )  of second and higher orders the 
number of equations (14) for the coefficients of this polynomial is much greater than 
the number of these coefficients and equations (14) are satisfied only when all these 
coefficients are equal to zero. Therefore equations (14) have only the trivial solution 

Thus we see that there exist strong restrictions on the form of the function A ( k )  
in multidimensional spaces (N  3 3). As a result only the operators Tz which are linear 
on a /ax1 ,  . . . , d/dxN-1 are admissible for N 2 3. It is easy to show then that only 
trivial linear equations d u / d t  + ZEA' aidu/dxi = 0 can be represented in the form 
[TI, Tz]  = 0 with the use of these admissible operators T2. 

A = I; aiki. 
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So the nature of the restrictions on the applicability of the IST method in multi- 
dimensional spaces is clear already in the Born approximation. 

Similar results are valid for other multidimensional scattering problems too. For 
the problem X t 1  A E a + / d x i  + P ( x l , .  . . , xN, t)+ = 0 see Konopelchenko (1983). 

Let us now discuss the properties of the dispersion laws. From formulae (7) and 
(9) it follows that W ( q , q N )  is nothing but the dispersion law for the corresponding 
evolution equation. One can obtain from (9) the equation which contains only the 
function W(q,  q N ) .  indeed, putting k = 0 in (9) one gets 

A(&’)-A(O)= W ( k ’ , f ( k ’ ) ) .  (15) 

For k ’ =  0 from (9) we have 

A ( 0 ) - A ( k )  = W ( - k ,  - f ( k ) ) .  (16) 

Substituting (15) and (16) into (9) we obtain 

W ( k ’ ,  f ( k ’ ) )  + W ( - k ,  - f ( k ) )  = W ( k ‘ - k , f ( k ’ ) - f ( k ) ) .  (17) 

Denoting p ’ =  ( p i  , . . . ,  p ~ - l , p ~ ) = ( k ; ,  . . . ,  k ~ - l , f ( k ’ ) )  and p = ( P I  ,..., PN- I ,PN)=  

( - k l , .  . . , - ~ N - I ,  - f ( k ) )  we rewrite (17) as 

(18) 

i.e. as the decay equation. The dispersion laws with the properties (18) have been 
discussed recently in Zakharov and Schulman (1980) and Zakharov (1982). They 
are interested in the degenerate dispersion laws, i.e. the dispersion laws for which 
equation (18) has several (not the only) solutions. 

It is easy to see that use of equation (9) gives us the solution of (18). Indeed, let 
us introduce the variables k’, k”,  k such that 

def def 

W(P + P ‘ )  = W ( P ) +  W(P’)  

p = k ” - k  p l =  & ’ - k ’ f  9 PN- 1 = f ( k ” )  -f(k ), pL-1 = f ( k f )  - f ( k ” )  
(19) 

where f ( k )  is a certain function of k .  Let A ( k )  be a solution of (18). Then 

W ( P ,  P N )  = A(&‘’) - A ( & )  (20) 

is the solution of (18). 
So any solution of the problem (9) gives us the solution of equation (18). In 

particular, if several functions A exist which satisfy (9) then the dispersion law W ( p )  
is degenerate (with respect to the decay process (18)). We see that the problem of 
enumeration of the evolution equations integrable by a given spectral problem is 
closely connected to the problem of degenerate dispersion laws. 

In two-dimensional space (N = 2) equation (9) has an infinite number of solutions 
and therefore the formulae (19)-(20) give the family of degenerate dispersion laws 
(see Zakharov and Schulman 1980 and Zakharov 1982). 

For multidimensional spaces ( N 2 3 ) ,  from theorem 1 one obviously has the 
following. 

Theorem 2. In multidimensional spaces ( N  3 3) there exist no degenerate dispersion 
laws of the form (19)-(20). 
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This theorem has a corollary which was discussed previously by Zakharov (1982). 

Corollary. For N = 3 there exist no degenerate dispersion laws of the form 

where Wn # 0. 

To prove this corollary let us expand the functions W and A given by (19) and 
(20) for N = 3 in the power series of q2 = k i  - k 2  = q. One has 

Substituting (22) into (20) we get 

At zero order of q one has 

Then since A(kl, k z )  should be a linear function of kl, k z ,  i.e. A(l)  = A ( z )  = * . = 0, 
we obtain W,,)  = W(2) = * * = 0. That is the statement of Zakharov's theorem 2.2 
(Zakharov 1982). 

In the two-dimensional case, N = 2, there exist degenerate dispersion laws of the 
form W(q, ,  q2) = q lF(qz /q l )  (Zakharov 1982). In multidimensional spaces (N  3 3) 
similar degenerate dispersion laws do not exist. Indeed, letting qi = k :  - ki + 0 (i = 
1 , .  . . , N - 11, one has 

This system of equations is under determined. It is impossible to express 
kl, . . . , ~ N - I  through 41, .  . . , qN with only the use of equation (25). As a result the 
right-hand side of (26) is a function of 4 1 , .  . . , qN only for the linear function 
A(kl, . 7 k N - 1 ) .  

The author is very grateful to Professor V E Zakharov for useful discussions. 
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